17 research outputs found

    Magnetic Field and Flavor Effects on the Gamma-Ray Burst Neutrino Flux

    Full text link
    We reanalyze the prompt muon neutrino flux from gamma-ray bursts (GRBs), at the example of the often used reference Waxman-Bahcall GRB flux, in terms of the particle physics involved. We first reproduce this reference flux treating synchrotron energy losses of the secondary pions explicitly. Then we include additional neutrino production modes, the neutrinos from muon decays, the magnetic field effects on all secondary species, and flavor mixing with the current parameter uncertainties. We demonstrate that the combination of these effects modifies the shape of the original Waxman-Bahcall GRB flux significantly, and changes the normalization by a factor of three to four. As a consequence, the gamma-ray burst search strategy of neutrino telescopes may be based on the wrong flux shape, and the constraints derived for the GRB neutrino flux, such as the baryonic loading, may in fact be already much stronger than anticipated.Comment: 4 pages, 3 figures. Minor clarifications. Final version to appear in Phys. Rev.

    UHE neutrino and cosmic ray emission from GRBs: revising the models and clarifying the cosmic ray-neutrino connection

    Full text link
    Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic ray (UHECRs, above 10^8 GeV), photons, and neutrinos, through photohadronic interactions between source photons and magnetically-confined energetic protons, that occur when relativistically-expanding matter shells loaded with baryons collide with one another. While neutrino observations by IceCube have now ruled out the simplest version of the internal shock model, we show that a revised calculation of the emission, together with the consideration of the full photohadronic cross section and other particle physics effects, results in a prediction of the prompt GRB neutrino flux that still lies one order of magnitude below the current upper bounds, as recently exemplified by the results from ANTARES. In addition, we show that by allowing protons to directly escape their magnetic confinement without interacting at the source, we are able to partially decouple the cosmic ray and prompt neutrino emission, which grants the freedom to fit the UHECR observations while respecting the neutrino upper bounds. Finally, we briefly present advances towards pinning down the precise relation between UHECRs and UHE neutrinos, including the baryonic loading required to fit UHECR observations, and we will assess the role that very large volume neutrino telescopes play in this.Comment: 4 pages, 2 figures. To be published in Proceedings of the 6th Very Large Volume Neutrino Telescope Workshop (VLVnT13), Stockholm, Sweden, 5-7 August, 201

    Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    Full text link
    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.Comment: 55 pages, 23 figures, 1 table. Version accepted for publication in Astroparticle Physics. Main analysis performed with TA data; for plots with HiRes data, see v

    Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts

    Full text link
    Gamma-ray bursts are short-lived, luminous explosions at cosmological distances, thought to originate from relativistic jets launched at the deaths of massive stars. They are among the prime candidates to produce the observed cosmic rays at the highest energies. Recent neutrino data have, however, started to constrain this possibility in the simplest models with only one emission zone. In the classical theory of gamma-ray bursts, it is expected that particles are accelerated at mildly relativistic shocks generated by the collisions of material ejected from a central engine. We consider neutrino and cosmic-ray emission from multiple emission regions since these internal collisions must occur at very different radii, from below the photosphere all the way out to the circumburst medium, as a consequence of the efficient dissipation of kinetic energy. We demonstrate that the different messengers originate from different collision radii, which means that multi-messenger observations open windows for revealing the evolving GRB outflows.Comment: 12 pages, 7 figures. Matches published versio

    Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes

    Full text link
    We discuss decays of ultra-relativistic neutrinos over cosmological distances by solving the decay equation in terms of its redshift dependence. We demonstrate that there are significant conceptual differences compared to more simplified treatments of neutrino decay. For instance, the maximum distance the neutrinos have traveled is limited by the Hubble length, which means that the common belief that longer neutrino lifetimes can be probed by longer distances does not apply. As a consequence, the neutrino lifetime limit from supernova 1987A cannot be exceeded by high-energy astrophysical neutrinos. We discuss the implications for neutrino spectra and flavor ratios from gamma-ray bursts as one example of extragalactic sources, using up-to-date neutrino flux predictions. If the observation of SN 1987A implies that \nu_1 is stable and the other mass eigenstates decay with rates much smaller than their current bounds, the muon track rate can be substantially suppressed compared to the cascade rate in the region IceCube is most sensitive to. In this scenario, no gamma-ray burst neutrinos may be found using muon tracks even with the full scale experiment, whereas reliable information on high-energy astrophysical sources can only be obtained from cascade measurements. As another consequence, the recently observed two cascade event candidates at PeV energies will not be accompanied by corresponding muon tracks.Comment: 20 pages, 6 figures, 1 table. Matches published versio

    Systematics in the Interpretation of Aggregated Neutrino Flux Limits and Flavor Ratios from Gamma-Ray Bursts

    Full text link
    Gamma-ray burst analyses at neutrino telescopes are typically based on diffuse or stacked (i.e., aggregated) neutrino fluxes, because the number of events expected from a single burst is small. The interpretation of aggregated flux limits implies new systematics not present for a single burst, such as by the integration over parameter distributions (diffuse fluxes), or by the low statistics in small burst samples (stacked fluxes). We simulate parameter distributions with a Monte Carlo method computing the spectra burst by burst, as compared to a conventional Monte Carlo integration. With this approach, we can predict the behavior of the flux in the diffuse limit as well as in low statistics stacking samples, such as used in recent IceCube data analyses. We also include the flavor composition at the detector (ratio between muon tracks and cascades) into our considerations. We demonstrate that the spectral features, such as a characteristic multi-peak structure coming from photohadronic interactions, flavor mixing, and magnetic field effects, are typically present even in diffuse neutrino fluxes if only the redshift distribution of the sources is considered, with z \simeq 1 dominating the neutrino flux. On the other hand, we show that variations of the Lorentz boost can only be interpreted in a model-dependent way, and can be used as a model discriminator. For example, we illustrate that the observation of spectral features in aggregated fluxes will disfavor the commonly used assumption that bursts with small Lorentz factors dominate the neutrino flux, whereas it will be consistent with the hypothesis that the bursts have similar properties in the comoving frame.Comment: 46 pages, 21 figures, 2 tables. Minor corrections in Sec. 3.3 (Gamma dependence of model FB-D). Fixed some typo
    corecore